生物多様性
生物多様性とは?
生物多様性とは、生態系・生物群系または地球全体に、多様な生物が存在していることを指す。
生物多様性の定義には様々なものがあるが、生物の多様性に関する条約では「すべての生物(陸上生態系、海洋その他の水界生態系、これらが複合した生態系その他生息又は生育の場のいかんを問わない。)の間の変異性をいうものとし、種内の多様性、種間の多様性及び生態系の多様性を含む」と定義されている。
生物多様性と進化
今日の地球上に見られる生物多様性は約40億年の進化の結果である。科学によっても生命の起源の詳細は不明であるが、地球形成後10億年(35億年前)には生命が確立したことを示唆する証拠がある。約12億年前までは、全ての生命はバクテリアなどの単細胞生物であった。
顕生代の生物多様性の歴史は、ほぼ全ての動物の門が揃った約5億4000万年前のカンブリア爆発の時期に開始し、急速に発展した。その後、大量絶滅として分類される定期的な多様性の大量消失があった他には、約4億年の間、地球的規模の生物多様性の変化には傾向はなかった。
化石記録に示された見かけの生物多様性は、ここ数百万年間が地球史上で生物多様性が最も豊富である時期であることを示唆している。しかしながら、全ての科学者がこの観点を支持している訳ではない。なぜならば、新しい地層ほど保持され利用可能であることにより化石記録がどれくらい強く偏っているか、不確実であると考えられているためである。化石収集の偏りについて修正を加えるならば現代の生物多様性は3億年前とあまり異なっていないと、主張する人もいる。現在の種の地球規模・マクロな推定値は、200万種から1億種の幅があり、最良の推定値は1000万種の近傍である。
恒常的に新しい種が発見されるが(鳥では年平均3つの新種)、発見されても未だ分類されていないものもある(南アメリカで発見される淡水魚の40%が未分類とする推定がある)。陸生の多様性の多くは熱帯雨林で観察される。
生物多様性への脅威
生物学者の中には、現在多くの生物種の絶滅が起きていると考え、これを完新世大量絶滅と呼ぶ者もいる。20世紀の期間中、生物多様性の衰退が観察され続けてきた。2006年には、かなり多くの種が絶滅危惧種に分類されている。多くの科学者が、正式に認知されていない数百万以上の種が危機にさらされていると見積もっている。種数領域理論を用いた計算で、年に最大14万種の消失があるとする推定値があり、議論を呼んでいる。年ごとに生じる新種の数は少ないので、多くの種が消失すると生態学的な諸事象の持続が不可能になる。
生息地の破壊
1000年から2000年にかけて起きた種の絶滅の多くは、人間の活動、特に動植物の生息地の破壊によるものと推定されている。人間による有機的資源の消費(特に熱帯雨林破壊)によって、絶滅が高い速度で引き起こされる。絶滅に向かっている種の多くは直接人間が利用している種ではないため、生息地は農地に変えられつつあり、それらの種が本来生み出す筈のバイオマスは食料や燃料など人間が利用できる形態に換えられている。
生態系に含まれる種が絶滅すると生態系の安定度が低下するので、地球の生態系の複雑さが更に減少するならば地球生態系は崩壊を運命付けられていると、上に述べた研究は警告を与えている。生物多様性の消失をもたらす要因は、人間活動によってもたらされる人口爆発、森林破壊、汚染(大気汚染・水質汚濁・土壌汚染)、および地球温暖化や気候変動がある。これらの要因は、累積しながら生物多様性に打撃を与える。
生物多様性の消失(例:森林伐採とその後の単一栽培)を、生態系破壊ではなく生態系の些細な標準化と、特徴付ける人もいる。生物資源への財産権や規制がない国々では、生物多様性の消失が起きている。
外来種の導入
他の陸地に生息する種から、海や大洋といった障害物によって隔絶されていたことにより、地球各地に多様性が豊かな地域が生じた。しかしながら、人間は船や飛行機を発明し、過去の進化史上で出会うことがなかった生物種を接触させる力を持った。 人間による外来種の導入は、競争による在来種や固有種の絶滅や、遺伝子汚染による生物種の変化を通じて多様性に強く脅威を与える。
外来生物は、捕食者や寄生者、あるいは養分・水・光を在来種から奪う単に攻撃的な種であることがある。外来種は進化的背景や環境の影響によって競争力を持ち、在来種は同様の理由で外来種に対して防御的で競争力がないことがしばしばある(言い換えるならば、持ち込まれた生物のうち、在来種との競争に勝ち残る能力を持つ生物が、外来種として新たな環境に定着するのである)。外来種が生態系に導入され自立した集団を確立すると、その生態系にいる在来種は生き残れないかもしれない。以上の結果として、人間が異なる地域から種を持ち込むことを続けるならば、世界中の生態系において少数の種だけが優勢になることも起こりえる。
遺伝子汚染は、在来の個体群が存在する地域に、近縁の別の個体群が人為的に持ち込まれることで、両者の間で交雑がおき遺伝子が交じり合う状態になることである。遺伝子汚染が起きると雑種を完全に駆除する以外には、純粋な在来種を復元する方法がない。日本においては、タイワンザルとニホンザルの混血、コイやメダカの放流の問題、農業用マルハナバチの野外拡散による在来種への影響の例がある。また、長野県辰野町松尾峡のように、観光用に増殖させようと移入した他県産ゲンジボタルが、在来ゲンジボタルの個体減少を招いたとの研究結果もある。
その他
生物多様性と関連を持ち注目を集めている出来事として両生類の減少がある。両生類は生態系の中で、小型動物の捕食者の地位にある。そのため、両生類が減少すると、昆虫の増加やそれに伴う生態系の撹乱がおきる可能性がある。
保全
基本的には、保全の選択肢として2種類の主な類型、本来の場所(in situ)での生息域内保全(以下、域内保全)と別の場所(ex situ)での生息域外保全(以下、域外保全)がある。域内保全活動の一例としては、保護地域の設定がある。他方、域外保護活動には、遺伝資源の収集保全や人工繁殖などがある。日本において遺伝資源保存・提供を行っている機関は、農業生物資源研究所のジーンバンクなどがある。また世界的には、種子銀行なども設置されている。
通常、域内保全は理想的な保全戦略であるように思われるが、しばしば実現不可能である。希少種や絶滅危惧種の生息地が破壊されている場合には、域外保全が必要となる。さらには域外保全は、域内保全事業への後方支援を提供できる。適切な維持を確実にするためには双方の保全が必要であると信じる人もいる。
国家レベルでは、個々の生物種を保護するために必要な手順を明記した生物多様性行動計画(Biodiversity Action Plan, BAP)を用意することがある。通常この計画には生物種とその生息地の実際のデータが詳細に記載される。そのような計画は、日本では生物多様性国家戦略、アメリカ合衆国では再生計画と呼ばれる。
持続可能な開発に関する世界首脳会議で討議された議題の中に「生物多様性に対する脅威」があり、継続的な植物の収集を補助するために地球規模の環境保全信託機構の設立が望まれるとされた。
生物多様性の現在の課題
創始者効果(海洋の生物多様性研究への展開)
生物多様性の研究分野は、狭い対象に集中しており、開始した人々の興味分野、すなわち陸生動物について過度に定義されていると批評を受けてきた。この研究内容の偏りはノースとアイリッシュによって「創始者効果」と名づけられた。
フランスとリグは、1998年に生物多様性の文献を総括して、海洋の生態系の研究論文が不足していることを見出し、海洋の生物多様性研究を「手に負えない大問題」と呼んだ。接近しにくい深海領域よりも、サンゴ礁など接近しやすく多様な沿岸の系について、より多くの研究がなされてきた。今後、海洋環境保全は、生物海洋学の海洋生態系の分類と生物種データ収集に関する方法論的問題を解くのと同様に、新しくて国際的なメカニズムを開発しなければならない。
生物の大きさに関する偏り(微生物の多様性について)
生物多様性研究者ショーン・ネイは、地球上の生物多様性を構成している生物の大多数は微生物であり、現在の生物多様性の研究は物理的に「目に見える世界に固定されている」と指摘した(ネイは「目に見える」を「巨視的」の同義語として使っている)。微生物は、多細胞生物と比較すると、代謝的にも環境的にも非常に多様である。「リボソームの小サブユニットRNAの解析に基づけば、生命は3系統に分岐しているが、見える生命はそれほど注目すべき分岐枝ではない」と、ネイは述べている。これは驚くにあたらない…というのは、「目に見える生物」が現れるまで、「目に見えない生物」(微生物)には、進化を進め多様化する20億年以上の時空間があったためである。
しかしながら、これに対する反論として、生物多様性の保全として「排他的に目に見える種に焦点を合わせた」ことは決してないということが指摘できる。 当初から、生物群集や生態系の型の分類・保全は、生物多様性研究の主体であった。生物分類から漏れている「目に見えない多様性」は「目に見える多様性」と同様に扱うことができなかったが、この過去の多様性保全の思想から、生態系の多様性を維持する最善の手段をとってきている。したがって、過去の生物多様性の研究の成果は、生態系を構成している「目に見えない生物」の多様性も可能な限り維持してきたと言える。